检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈小民[1]
机构地区:[1]中国石油大学(北京)理学院,北京102249
出 处:《数学杂志》2017年第3期558-566,共9页Journal of Mathematics
基 金:Supported by the Science Foundation of China University of PetroleumBeijing(2462015YQ0604);partially by the Personnel Training and Academic Development Fund(2462015QZDX02)
摘 要:本文引入了近切触流形(M,φ,ξ,η,g)中φ~*-解析向量场的概念,并研究了其性质.利用近切触流形的性质,证明了切触度量流形中的φ~*-解析向量场v是Killing向量场且φv不是φ*-解析的.特别地,如果近切触流形M是正规的,得到v与ξ平行且模长为常数.另外,证明了3维的切触度量流形不存在非零的φ~*-解析向量场.In this article, we introduce the conception of φ^*-analytic vector field in almost contact manifold (M,φ,ξ,η,g) and study its properties. Making use of the properties of almost contact manifold, we prove that in a contact metric manifold the φ^*-analytic vector field v is Killing, and that φv must not beφ^*-analytic unless zero vector field. Particularly, if M is normal, we get that v is collinear to ξ with constant length, and for the case of three dimensional contact metric manifold it is proved that there does not exist a non-zero φ^*-analytic vector field.
关 键 词:φ^*-解析向量场 KILLING向量场 近切触结构 切触度量流形 SASAKI流形
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38