检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:聂钦汉
机构地区:[1]西南民族大学,四川成都610041
出 处:《西南民族大学学报(自然科学版)》2017年第3期307-313,共7页Journal of Southwest Minzu University(Natural Science Edition)
摘 要:对任三个正整数x、y、z,证明了(x/z)~n+(y/z)~n≠1(n≥3的整数),进而证明了n次不定方程x^n+y^n=z^n(n≥3的整数)无正整数解.因为由任三个x、y、z组成的三数组有无限多个,把这些三数组分成五类,并对各类三数组证明都有(x/z)~n+(y/z)~n≠1.前三类x、y、z易证有(x/z)~n+(y/z)~n≠1,第四类x、y、z用无限整体与有限部份间的关系可证(x/z)~n+(y/z)~n≠1,第五类x、y、z,先引入N_小概念,又对N_小>3的x、y、z引入N_大概念,再用引2的结果证明N_小与N_大是相邻整数,于是可证(x/z)~n+(y/z)~n≠1,从而易证Fermat大定理正确.This paper prves the equation of (x/z)n+(y/z)n≠1( the integer of n ≥ 3) for any three positive integers x,y,z, and the equation of xn + y" = zn ( the integer of n ≥ 3 ) without positive integer solution. Three arrays composed of any three x, y, z have infinite number, these three groups are divided into five categories, and all three groups prove the equation of (x/z)n+(y/z)n≠1.For the first three categories x, y, z, it is easy to prove the equation of (x/z)n+(y/z)n≠1.For the fourth category x, y, z, the equation of (x/z)n+(y/z)n≠1 can be proved by the relationship between the infinite whole and finite part of the card. For the fifth category x,y, z, the equation of (x/z)n+(y/z)n≠1 can be proved by firstly introducing the concept of Nsmall, and introducing the concept of Nlarge for the Nsmall 〉 3 x, y, z, and then proving that Nsmall and Nlarse are adjacent integers by citing the results of 2. Thus it is easy to prove that Fermat last theorem is correct.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.32.191