检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨永利[1] 丛华[1] 冯辅周[1] 江鹏程[1] YANG Yong- li CONG Hua FENG Fuzhou JIANG Peng- cheng(Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072, China)
出 处:《计算机仿真》2017年第6期71-75,共5页Computer Simulation
摘 要:针对现有航天发射场空调制冷系统的控制精度较低,不利于给航天器提供良好的发射环境,建立基于神经网络的预测模型,采用优化建模方法,能很好地提高控制精度,主要问题在于神经网络结构和参数寻优算法的确定。首先分析并确定了制冷系统的神经网络结构及相关参数,然后针对传统神经网络算法(梯度法)寻优速度慢和"过拟合"的缺点,提出了一种新型的神经网络训练算法——MPGA-BPNN,利用多种群遗传算法MPGA搜索网络的阈值和权值等参数,具有全局优化能力且寻优速度快的优点。所建模型具有很好的预测精度,说明了目标优化控制方法对于发射场制冷系统具有很好的适用性。At present, the refrigeration system in spacecraft launching site is of low control precision, which is harmful to keeping good launching environment for spacecraft. For building neural network predictive model and adopting optimization model contribute to the improvement of control precision, its main difficulty is the determination of network configuration and optimization algorithm. Firstly the network structure and related parameters of neural network of refrigeration system were well analyzed and determined, then with an eye to the slow convergence speed and over - fitting of traditional network training algorithm, a novel training method MPGA - BPNN was proposed, which makes use of multiple population genetic algorithm (MPGA) to search the optimum weight value and threshold value of BPNN, and has the merits of global optimum ability and fast convergence speed. The network is of high prediction precision ,which proves that the optimization modeling method is suitable for refrigeration system in spacecraft launching site.
关 键 词:制冷系统 神经网络 建模 多种群遗传算法 网络结构
分 类 号:TB615[一般工业技术—制冷工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145