基于最近邻居优化选取方法的协同过滤推荐算法  被引量:1

Collaborative Filtering Recommendation Algorithm Based on Nearest Neighbor Optimal Selection Method

在线阅读下载全文

作  者:张子洋[1] 金志刚[1] 张瑞[1] 

机构地区:[1]天津大学电气自动化与信息工程学院,天津300072

出  处:《南开大学学报(自然科学版)》2017年第3期27-32,共6页Acta Scientiarum Naturalium Universitatis Nankaiensis

摘  要:针对传统的协同过滤推荐算法推荐精度低和数据稀疏的问题,提出基于最近邻居优化选取方法的协同过滤推荐算法.首先,提出一种用户可用度计算模型,根据其他用户对目标用户的可用度计算结果,选取最近邻居候选集.然后,提出一种用户信任度计算模型,计算目标用户对最近邻居候选集中用户的信任度,进而选取目标用户的最近邻居.最后,根据最近邻居的评分情况,得到目标用户的推荐.实验结果表明,该算法提高了推荐精度,而且有效地改善了不同稀疏程度数据上的推荐效果.To solve the problems of the low recommendation precision and data sparseness in traditional collaborative filtering, a collaborative filtering recommendation algorithm based on nearest neighbor optimal selection method was proposed. Firstly, the availability computing model was designed to calculate availability between users and on the basis of the availability, the alternative nearest neighbor set of target user was selected. Then the trust degree computing model was designed to calculate trust degree according to the ratings of alternative nearest neighbors, and the nearest neighbor set of target user was chosen based on the trust degree between users. Finally, the target user's recommendation was obtained according to the nearest neighbors' ratings. Experimental results show that the proposed algorithm not only can improve the recommendation precision, but also can efficiently improve the recommendation quality on different sparsity data.

关 键 词:推荐算法 协同过滤 最近邻居 可用度 信任度 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象