基于非负稀疏图的协同训练软件缺陷预测  被引量:2

Defect Prediction of Co-training Software with Non-negative Sparse Graph

在线阅读下载全文

作  者:张志武[1] 荆晓远[2,3] 吴飞[2] 

机构地区:[1]南京邮电大学计算机学院,江苏南京210023 [2]南京邮电大学自动化学院,江苏南京210023 [3]武汉大学软件工程国家重点实验室,湖北武汉430072

出  处:《计算机技术与发展》2017年第7期38-42,共5页Computer Technology and Development

基  金:国家自然科学基金资助项目(61073113;61272273);江苏省普通高校研究生科研创新计划项目(CXZZ12_0478)

摘  要:软件缺陷预测是一种可提高软件系统质量和优化测试资源分配的软件系统可靠性保证方法。当软件历史仓库中有标记训练模块较少时,应用机器学习方法构建有效的预测分类器是一个有挑战性的问题。为此,提出了一种基于非负稀疏图的协同训练软件缺陷预测方法,该方法汇集基于图的半监督学习方法和协同训练方法的优点,对无标记数据进行显示置信度估计。其利用软件模块间的相似性构建一个非负稀疏图,图中边的权重反映了样本间的相似度;利用协同训练的三个分类器对无标记样本的隐式选择和显示计算其所属类别的置信度,选取可靠的无标记样本辅助有标记样本进行训练以减少噪声数据的引入,并逐个迭代更新分类器,直至达到最大迭代次数或分类器识别率降低为止。基于NASA M DP数据集的验证实验结果表明,所提出的方法优于具有代表性的半监督协同训练方法。Software defect prediction is a system reliability assurance method which can improve the quality of software system and opti- mize the distribution of test resources. When the previous defect labels of modules in software history warehouse are limited,building an effective prediction classifier by using machine learning methods becomes a challenging problem. Aiming at this problem, a co-training algorithm for software defect prediction based on non-negative sparse graph is proposed, which combines with the advantages of the graph-based semi-supervised learning method and the co-training method and estimates the confidence of unlabeled data. A non-nega- tive sparse graph has been constructed by the similarity between the software modules so that the edge of the graph reflects the similarity between samples. Then three classifiers have been employed for co-training. In order to reduce the introduction of noise data,the reliable unlabeled samples have been selected for training by the implicit selection of the three classifiers and the confidence estimation of the cate- gories. The classifiers keep to iteratively updating until the maximum number of iterations has reached or the recognition rates of classifi- ers have been reduced. Experimental results on NASA MDP datasets show that the proposed method is superior to the representative semi -supervised co-training method.

关 键 词:非负稀疏图 协同训练 半监督学习 软件缺陷预测 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象