数据整合中异常检测算法研究  被引量:1

Research on Anomaly Detection Algorithm in Data Integration

在线阅读下载全文

作  者:方正[1,2] 高岑[2] 田月[2] 王嵩[2] 

机构地区:[1]中国科学院大学,北京100049 [2]中国科学院沈阳计算技术研究所,沈阳110168

出  处:《计算机系统应用》2017年第7期200-203,共4页Computer Systems & Applications

摘  要:传统的数据整合方案^([1])中存在结构上的不严谨性,在整合期间由于各种原因导致整合后的结果存在很多异常离群点,而且并没有有效的措施进行检测和避免.本文提出了基于角度的改进后的三阶段离群点检测算法,通过对数据整合后的结果进行检测,有效地消除了存在的大量疑似离群点.这种改进算法减小了传统算法中对离群点误判的可能性,考虑到数据动态变化的因素,二次验证疑似离群点的异常情况的真实性.本文以生产事故应急救援平台系统项目为背景.Traditional data integration solutions in the presence of the structure are not precise. During the integration period, the integrated result due to various reasons has many abnormal outliers, which cannot be detected and avoided with effective measures. This paper proposes an improved three stage outlier detection algorithm based on angle, which is mainly to detect the results after data integration, and effectively solve the problem of a large number of suspected outliers. This improved algorithm reduces the possibility of outliers in the traditional algorithm, taking into account the factors of dynamic changes in the data, verifying the abnormal real situation of suspected outliers for two times. This paper is backgrounded on the project of production accident emergency rescue system.

关 键 词:数据整合 异常检测 离群点检测 基于角度 生产事故 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象