PORSC:融合用户个性化特征的在线评论情感分类模型  被引量:2

PORSC:A Sentiment Classification Model Integrating User Personality for Online Reviews

在线阅读下载全文

作  者:宋晓勇[1] 吕品[1] 陈年生[1] SONG Xiaoyong LU Ping CHEN Niansheng(School of Electronic Information, Shanghai Dianj i University, Shanghai 201306, China)

机构地区:[1]上海电机学院电子信息学院,上海201306

出  处:《复旦学报(自然科学版)》2017年第3期359-365,373,共8页Journal of Fudan University:Natural Science

摘  要:针对传统在线评论情感分类忽视了用户个性化的问题,提出了一种融合用户个性化特征的在线评论情感分类(PORSC)方法,该方法为每一类型用户构建一个在线评论情感分类器.PORSC模型由2部分构成:一部分是具有学习评论中常见情感信息的全局情感分类模型;另一部分是能捕捉每种类型用户的个性化特征的特定用户类型分类模型.为解决PORSC模型在训练中的数据稀疏问题,引入多任务学习方法,以协同方式训练分类器,以并行方式解决了PORSC模型中参数的优化问题.通过在2个实际中文产品评论数据集和一个公开的英文评论数据集上实验,并与已有基线方法进行比较与综合分析,结果表明PORSC模型在一定程度上提高了在线评论情感分类的精度.Focusing on the issue that traditional sentiment classification models of online reviews usually omit the user personality,a model called PORSC was constructed for sentiment classification.The PORSC model contains two components,aglobal one and a user-specific one.The global classifier was used to learn the common sentiment knowledge shared by all users in online reviews.The user-specific classifier was applied to capture the user personality.To address the data sparseness problem in training for the PORSC model,the personalized sentiment classifiers of different kinds of users were trained in a collaborative way based on multi-task learning so that the parameters of the PORSC model can be optimized in parallel.The experimental results on two datasets from the real-life product online reviews and public English books reviews indicate that the proposed PORSC model can improve the accuracy of sentiment classification for online reviews effectively and efficiently.

关 键 词:用户个性 在线评论 情感分类 多任务学习 

分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象