检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]平顶山学院数学与统计学院,河南平顶山467000
出 处:《四川师范大学学报(自然科学版)》2017年第4期464-472,共9页Journal of Sichuan Normal University(Natural Science)
基 金:国家自然科学基金(11271340);河南省科技计划项目(162300410082)
摘 要:对一类非线性广义神经传播方程利用EQ_1^(rot)元及零阶Raviart-Thomas(R-T)元建立一个低阶非协调混合元格式.首先,证明逼近解的存在唯一性.其次,在半离散格式下,基于上述2个单元的高精度结果,借助EQ_1^(rot)元的特殊性质以及对时间t的导数转移技巧,导出原始变量u的H^1-模和中间变量p的L^2-模意义下O(h^2)阶的超逼近结果.最后,建立该方程的一个全离散逼近格式,分别得到原始变量u的H^1-模以及中间变量p的L^2-模意义下的具有O(h^2+τ~2)超逼近结果.这里,h和τ分别表示空间剖分参数及时间步长.Based on the nonconforming EQ1rotelement and the Raviart-Thomas (R-T) element, a new lower order nonconforming mixed finite elements method is proposed for Generalized nerve conduction equation. Firstly, the existence and uniqueness of approxi- mation solutions are proved. Secondly, based on the high accuracy results of the about two elements and derivative transferring tech- nique with respect to the time variable, the superclose with order O ( h2 ) for the primitive solution in H1 -norm and the intermediate vari- able p in L2-norm are obtained under semi-discrete scheme respectively. Finally, a new fully-discrete approximation scheme is proposed and the superclose estimates with order O( h2 +τ2 ) are deduced for the primitive solution in H1 -norm and the intermediate variable p in L2-norm respectively. Here, h and "r are the subdivision parameter in space and time step respectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.64.200