检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯言旭 姜礼杰[2] 胡保华[2] 张秀锋[2] 王勇[2]
机构地区:[1]合肥工业大学智能制造技术研究院,合肥230009 [2]合肥工业大学机械工程学院,合肥230009
出 处:《仪器仪表学报》2017年第7期1625-1633,共9页Chinese Journal of Scientific Instrument
基 金:科技型中小企业技术创新基金(11C26213402042)项目资助
摘 要:肌肉疲劳是一种复杂的生理现象。针对利用表面肌电信号实时评估肌肉疲劳,要求疲劳指标兼具快速、可靠、抗噪的问题,提出基于边际谱熵的肌肉疲劳实时评估方法。首先,利用不同数据长度的确定性周期信号和高斯白噪声分析了边际谱熵快速性与数据长度稳健性;其次,利用10名受试者握力持续静态收缩状态下从100%MVC下降到50%MVC时桡侧腕长伸肌的肌肉疲劳信号,分析了边际谱熵评估肌肉疲劳的可靠性与应用于不同个体的稳定性;最后,在某一受试者肌肉疲劳信号中加入高斯白噪声和心电噪声考察了边际谱熵的抗噪性。实验结果表明,边际谱熵与近似熵和中值频率相比计算快速,数据长度稳健性更优;线性拟合优度较佳(0.46±0.14),能可靠地评估肌肉疲劳;斜率变异系数较低(30.30%),对不同个体稳定性高;加入高斯白噪声和心电噪声后边际谱熵拟合优度变化率较低(分别为34.39%和3.78%),具有良好的抗噪性。因此边际谱熵兼具快速、能可靠评估肌肉疲劳以及抗噪等优点,为实时评估肌肉疲劳提供一种新方法。Muscle fatigue is a complex physiological phenomenon. The real-time assessment of muscle fatigue with surface electromyography requires that fatigue indices are rapid, noise immunity, and reliable. The real-time assessment of muscle fatigue is proposed based on the marginal spectrum entropy. First, deterministic periodic signals with different data lengths and Gauss white noise are used to analyze the rapidity of marginal spectrum entropy and the robustness of data length. When 10 subjects grip under continuous static contraction state decreases from 100% maximal voluntary contraction to 50% maximal voluntary contraction, the muscle fatigue signals of long extensor carpi are used to analyze the reliability of the assessment method and the stability for different individuals. Finally, the noise immunity of marginal spectral entropy is investigated by adding Gauss white noise and electrocardiogram noise into the muscle fatigue signal of a subject. Experimental results show that the calculation based on marginal spectrum entropy is more rapid and data length robustness is more obvious, compared with approximate entropy and median frequency. Goodness of fit based on marginal spectrum entropy is better(0.46 + 0.14) , and the marginal spectrum entropy can reliably assess muscle fatigue. Slope of the coefficient of variation is lower( 30.30% ), and the marginal spectrum entropy is highly stable for different individuals. Rate of change of the goodness of fit of the marginal spectral entropy is lower after Gaussian white noise and electrocardiogram noise are added ( additive Gaussian white noise and additive electrocardiogram noise are 34.39% and 3.78% respectively). It can be concluded that the marginal spectrum entropy is suitable for real-time assessment of muscle fatigue, which provides a new method for muscle fatigue assessment.
关 键 词:边际谱熵 肌肉疲劳 表明肌电信号 希尔伯特黄变换 实时评估
分 类 号:TH789[机械工程—仪器科学与技术] R318.6[机械工程—精密仪器及机械]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3