基于灰色粗糙集与BP神经网络的设备故障预测  被引量:17

Equipment fault prediction based on grey rough set and BP neural network

在线阅读下载全文

作  者:郭宇[1] 杨育[1] Guo Yu(State Key Laboratory of Mechanical Transmission, Yang Yu Chongqing University, Chongqing 400030, Chin)

机构地区:[1]重庆大学机械传动国家重点实验室,重庆400030

出  处:《计算机应用研究》2017年第9期2642-2645,共4页Application Research of Computers

基  金:国家自然科学基金资助项目(71571023)

摘  要:为更有效地预测设备故障,提出一种基于灰色粗糙集与BP神经网络的设备故障预测模型。用灰色关联分析和粗糙集理论分别对二维故障决策表进行横向和纵向两个维度的约简,将冗余的数据和属性去掉,并将约简后的数据输入到BP神经网络,预测设备故障。最后以地铁信号设备故障预测为例进行实例验证,结果表明该模型预测误差更小,预测准确率更高。In order to predict equipment failure more effectively, this paper proposed a model of equipment fault prediction based on the grey rough set and BP neural network. By use of grey incidence analysis and rough set theory, it reduced a two- dimensional fault decision table from both horizontal and vertical dimensions, and removed the redundant data and attributes of the decision table, after the reduction, input the data to the BP neural network to predict the equipment failure. Finally, it carried out a case study on the fault prediction of subway signal equipment, and the results show that the model has smaller prediction error and higher accuracy.

关 键 词:灰色关联分析 粗糙集 BP神经网络 约简 故障预测 

分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象