检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵学观[1,2] 王秀[1,2] 李翠玲[1,2] 高原源 王松林[1,2] 冯青春[1,2]
机构地区:[1]北京农业智能装备技术研究中心,北京100097 [2]国家农业智能装备技术研究中心,北京100097 [3]中国农业大学信电学院,北京100083
出 处:《浙江农业学报》2017年第8期1375-1383,共9页Acta Agriculturae Zhejiangensis
基 金:国家高技术研究发展计划(2013AA102406);北京市农林科学院青年基金项目(QNJJ2017)
摘 要:提出了一种基于主成分分析优化(PCA)及竞争性神经网络(LVQ)的番茄种子品种识别方法,对番茄品种识别技术与算法进行了研究,提取了番茄种子的几何特征、纹理特征和7个不变矩特征,通过主成分分析选取了4个主成分作为人工神经网络的输入,对黑迪、红迪、佳粉十八、金迪、丘比特5个品种进行了LVQ神经网络品种识别试验。试验结果表明,竞争层节点数目为20,训练次数为96时每粒种子识别的平均耗时最短,识别准确率最高,分别为0.2 s、90.5%,基于机器视觉的番茄种子品种识别与检测方法是可行的。In order to realize the real-time,accurate and no-damage mechanization identification of tomato seed varieties,according to the characteristics of tomato seeds and its image,the tomato varieties identification technology and algorithm were studied.This paper proposed a tomato seed varieties identification method,which is a kind of optimization by LVQ neural network based on principal components analysis,extracting the shape characteristics,texture feature and seven moment invariants of the tomato seeds.Four principal components as the input of artificial neural network were chosen through the principal components analysis.The identification test was conducted on five varieties of Heidi,Hongdi,Jiafen 18,Jindi and Cupid.The number of competitive layer neurons and training trials were determined according to the test,which were 20 and 96.Under the condition,the average time of each seed identification was the shortest,and the recognition accuracy was the highest,which were 0.2s and 90.5% respectively.The research showed that the method of identification and detection of tomato seed varieties based on machine vision is feasible.
分 类 号:S126[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44