检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈英义[1,2] 程倩倩[1,3] 成艳君[1,3] 于辉辉 张超[1]
机构地区:[1]中国农业大学信息与电气工程学院,北京100083 [2]农业部农业信息获取技术重点实验室,北京100083 [3]北京农业物联网工程技术研究中心,北京100083
出 处:《农业机械学报》2017年第8期172-178,共7页Transactions of the Chinese Society for Agricultural Machinery
基 金:山东省重点研发计划项目(2015GGX101041);上海市科技兴农重点攻关项目(沪农科攻字(2014)第4-6-2号);广东省海大集团基于物联网技术的智慧水产养殖系统院士工作站(2012B090500008)
摘 要:为解决传统的水温小样本非实时预测方法预测精度低、鲁棒性差等问题,基于物联网实时数据,提出了遗传算法(GA)优化BP神经网络的池塘养殖水温短期预测方法,并在此基础上设计开发了池塘养殖水温预测系统,首先采用主成分分析法筛选出影响池塘水温的关键影响因子,减少输入元素;然后使用遗传算法对初始权重和阈值进行优化,获取最优参数并构建了基于BP神经网络的水温预测模型;最后采用Java语言开发了基于B/S体系结构的预测系统。该系统在江苏省宜兴市河蟹养殖池塘进行了预测验证。结果表明:该系统在短期的水温预测中具有准确的预测效果,与传统的BP神经网络算法相比,研究内容评价指标平均绝对误差(MAE)、平均绝对百分误差(MAPE)和误差均方根(MSE)分别为0.196 8、0.007 9和0.059 2,均优于单一BP神经网络预测,可满足实际的养殖池塘水温管理需要。The pond water temperature is one of the most important parameters which directly affect the feeding,growth,livability and reproduction of aquaculture animals. Thus it is significant to grasp the pond water temperature change for the healthy aquaculture. In order to solve the problems of low precision and poor robustness of traditional forecasting methods,a short-term prediction model of water temperature in aquaculture pond was proposed based on BP neural network optimized by genetic algorithm,and pond aquaculture water temperature prediction system was designed and developed.Firstly,the principal component analysis( PCA) was used to ensure the factors that influenced the water temperature in aquaculture pond. Secondly,the genetic algorithm and BP neural networkwere integrated to optimize initial weights and threshold. The method not only can get optimal parameter,but also can reduce the errors generated by random initialization. Thirdly,the short-term prediction system was developed by using Java language based on B/S architecture. Finally,the system was applied in Yixing City,Jiangsu Province. Results showed that the mean absolute error( MAE),mean absolute percentage error( MAPE) and root mean square error( RMSE) from GA-BP neural network method were 0. 196 8,0. 007 9 and 0. 059 2,respectively. It was clear that GA-BP neural networkwas better than BP neural network algorithm. The research result met the practical needs of the pond water temperature management.
关 键 词:水产养殖 水温预测系统 主成分分析 遗传算法 BP神经网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术] S95[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3