检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩兴国[1,2] 宋小辉[2,3] 殷鸣 陈海军 殷国富
机构地区:[1]四川学制造科学与工程学院,成都610065 [2]桂林航天工业学院机械工程学院,桂林541004 [3]南安普顿大学环境与工程学院,南安普顿S0171BJ
出 处:《农业机械学报》2017年第8期384-390,412,共8页Transactions of the Chinese Society for Agricultural Machinery
基 金:“十二五”国家科技支撑计划项目(2015BAF27B01);四川省科技计划项目(2015GZ0036、2016GZ0195);广西高校中青年教师基础能力提升项目(KY2016YB535);广西高校机器人与焊接重点实验室主任基金项目(JQR2015ZR04)
摘 要:为了提高6R焊接机器人的位姿精度和焊接轨迹的准确度,提出了一种基于RBF神经网络的6R焊接机器人逆运动学求解方法。针对6R焊接机器人逆运动学方程组具有高维、非线性、求解复杂的特点,基于RBF神经网络建立运动学逆解预测模型,采用尺度空间理论对焊接机器人的位姿参数样本所在的工作空间进行分区,采用均匀设计法和模糊聚类理论对分区后的训练样本进行优选,并根据Z-Y-Z坐标转换原理进行转换和归一化处理,将逆运动学求解问题转换为基于RBF的6输入6输出预测系统。运用该系统对6R焊接机器人进行了复杂焊接轨迹仿真和点焊实验,并与基于组合优化迭代法和BP神经网络的逆运动学求解效果与焊接精度进行了比较,结果表明,基于RBF的6R焊接机器人运动学逆解预测模型具有求解简单、精度高、便于轨迹规划的特点,证明了该方法的可行性和有效性。A new method of solving inverse kinematics of 6R welding robot based on radial basis function( RBF) neural networks was presented to improve the precision of the position and orientation and the accuracy of welding trajectory for the 6R welding robot. The inverse kinematics solution prediction model of the 6R welding robot was established based on RBF neural networks because the inverse kinematics equations were high-dimensionally nonlinear and solving these equations was complex. The work space in which 6R welding robot position and orientation sample parameters were situated was divided based on scale-space theory. After that the training sample set was selected optimally based on uniform design and the cluster theory. The parameters were transformed and normalized according to the Z-Y-Z coordinate conversion principle. The problem of solving the inverse kinematics equations was transformed into six inputs and six outputs prediction system based on RBF neural network. Complex movement trajectory of 6R robot was simulated and the spot welding experiments were done by means of this prediction system.The results of the prediction and welding track accuracy were compared with the inverse kinematics solution based on combinatorial optimization iteration algorithm and back propagation( BP) neural networks. The results showed that the RBF prediction model of solving 6R welding robot inverse kinematics equations was simpler,more accurate and easier to do trajectory planning,and it was proved to be feasible and effective.
关 键 词:6R焊接机器人 逆运动学 RBF神经网络 焊接轨迹 误差分析
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15