检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭婷婷[1]
出 处:《中北大学学报(自然科学版)》2017年第3期277-281,共5页Journal of North University of China(Natural Science Edition)
基 金:山西大学商务学院科研基金资助项目(2016028)
摘 要:对双Bell多项式进行研究,并基于多维双Bell多项式和标准的Hirota双线性方程之间的关系,构造出(2+1)维KdV方程带有任意函数的双线性表达式.运用双Bell恒等式,确定(2+1)维KdV方程的双线性Bcklund变换.通过做变量变换,将(2+1)维KdV方程的耦合系统线性化为含有多个参数的Lax对,并证明其满足可积性条件.此外,求得这个非线性发展方程的无穷守恒律,并准确地给出所有守恒密度和流量的递推公式.The binary Bell polynomials are researched, based on the link between multi-dimensional binary Bell polynomials and the standard Hirota bilinear equation, the bilinear expressions with arbitrary function for (2+1) dimensional KdV equation are constructed, the approach is different from the Hirota bilinear method.By application of binary Bell identity, the bilinear B(a)cklund transformations of the (2+1) dimensional KdV equation are obtained.By means of variate transformation, the coupled system of the (2+1) dimensional KdV equation is linearized into Lax pairs with multi-parameters, it is proved that the integrability condition is satisfied.In addition, the infinite conservation laws of this nonlinear evolution equation are derived, all conserved densities and fluxes are given with explicit recursion formulas.
关 键 词:双Bell多项式 (2+1)维KdV方程 Bcklund变换 无穷守恒律 LAX对
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.86.137