检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学电子信息与电气工程学院,上海200240
出 处:《电子与信息学报》2017年第9期2033-2039,共7页Journal of Electronics & Information Technology
基 金:国家973关键技术研究项目(2013CB329603);国家自然科学基金(61472248;61431008)~~
摘 要:针对网络结构的复杂性和群体划分的不确定性,该文提出一种基于模糊聚类的多分辨率社区结构发现方法。该方法用模糊方法来处理网络节点间的相似性,以实现社区结构的模糊划分。基于节点间的局部交互信息,考虑节点间的模糊关系和网络拓扑结构相似性传递,实现网络社区的层次聚类。并通过调节模糊参数,挖掘出不同分辨率下的社区结构。同时为了避免主观地确定社区数目,引入一种新的模块度以度量社区划分结果。实验证明该方法能够有效且稳定地揭示潜在的社区结构。Focusing on the complexity of network structure and the indeterminacy of community partition, this paper puts forward a novel fuzzy clustering method for uncovering community structures. In contrast to previous studies, the proposed method disposes the similarity of connecting vertices with fuzzy relation. Based on local interactive information, it considers the fuzzy relation between vertices and the transitive similarity in network topology to divide vertices into communities. In addition, multiresolution communities can be detected by adjusting fuzzy parameter. In order to avoid subjectivity in the selection of cluster number, a new modularity is introduced to evaluate the effectiveness of the clustering analysis. It is proved by experiments that the method is efficient and stable to detect underlying communities.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15