检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘坤坤[1]
出 处:《软件导刊》2017年第9期55-60,共6页Software Guide
摘 要:为了使自主移动机器人在SLAM(同步定位和地图创建)上更加准确,分析了粒子滤波器(Particle Filter,PF)的FastSlam算法在粒子退化和粒子早熟两方面的不足,提出了一种改进算法(IGA算法)。该算法通过替代原有的重采样过程,改善了粒子多样性,提高了预测精度。在粒子早熟方面采用模拟退火思想对遗传算子进行改进,避免了遗传算法中的遗传算子易陷入局部最优解产生“早熟”现象问题。仿真结果表明,IGA算法使粒子保持的多样性更加持久,算法精度持续时间更长。In order to make the autonomous mobile robot more accurate in SLAM, an improved algorithm (IGA algorithm) is proposed based on the shortcomings of Particle Filter (PF) FastS/am algorithm in particle degradation and early maturing of par- ticles. The algorithm is used to replace the original resampling process to improve the particle diversity and improve the prediction accuracy. The genetic algorithm is improved by using simulated annealing in the early maturing of particles, which avoids the genetic algorithm in the genetic algorithm which is easy to fall into the local optimal solution and produce "premature" phe- nomenon. The simulation results show that the IGA algorithm makes the diversity of particles more durable and the algorithm has longer duration.
关 键 词:SLAM Fast SLAM IGA遗传算法粒子滤波 粒子退化 粒子早熟
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30