检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卞则康 王士同[1] BIAN Zekang WANG Shitong(School of Digital Media, Jiangnan University, Wuxi 214122, China)
出 处:《智能系统学报》2017年第4期450-458,共9页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金项目(61272210)
摘 要:距离度量对模糊聚类算法FCM的聚类结果有关键性的影响。实际应用中存在这样一种场景,聚类的数据集中存在着一定量的带标签的成对约束集合的辅助信息。为了充分利用这些辅助信息,首先提出了一种基于混合距离学习方法,它能利用这样的辅助信息来学习出数据集合的距离度量公式。然后,提出了一种基于混合距离学习的鲁棒的模糊C均值聚类算法(HR-FCM算法),它是一种半监督的聚类算法。算法HR-FCM既保留了GIFP-FCM(Generalized FCM algorithm with improved fuzzy partitions)算法的鲁棒性等性能,也因为所采用更为合适的距离度量而具有更好的聚类性能。实验结果证明了所提算法的有效性。The distance metric plays a vital role in the fuzzy C-means clustering algorithm. In actual applications, there is a practical scenario in which the clustered data have a certain amount of side information, such as pairwise constraints with labels. To sufficiently utilize this side information, first, we propose a learning method based on hybrid distance, in which side information can be utilized to attain a distance metric formula for the data set. Next, we propose a robust fuzzy C-means clustering algorithm (HR-FCM algorithm) based on hybrid-distance learning, which is semi-supervised. The HR-FCM inherits the robustness of the GIFP-FCM ( generalized FCM algorithm with improved fuzzy partitions) and has better clustering performance due to the more appropriate distance metric. The experimental results confirm the effectiveness of the proposed algorithm.
关 键 词:距离度量 FCM聚类算法 成对约束 辅助信息 混合距离 半监督 GIFP—FCM 鲁棒性
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15