检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李雅梅[1] 康璐璐 LI Ya-mei KANG Lu-lu(College of Electrical and Control, Liaoning Technical University, Huludao 125000, China)
机构地区:[1]辽宁工程技术大学电气与控制学院,辽宁葫芦岛125000
出 处:《传感器与微系统》2017年第9期38-40,44,共4页Transducer and Microsystem Technologies
基 金:国家自然科学基金资助项目(51274118)
摘 要:针对移动机器人在定位过程中,由传感器测量误差和机器人模型引起的位姿误差导致系统定位精度急剧下降的问题,提出了一种多新息卡尔曼滤波算法。在标准卡尔曼滤波的基础上,当传感器测量值存在误差时,引入抗差权因子,通过改变误差测量值的权值提高滤波器的估计精度;当机器人位姿存在误差时,引入自适应因子,通过调整状态协方差矩阵的大小抵制位姿误差引起的滤波发散。同时,引入了多新息,即多个时刻的新息向量,进一步提高此非线性系统的精度。实验表明:当存在测量误差和位姿误差时,该滤波算法能有效提高定位精度。In the positioning process,the positioning accuracy of mobile robot drops sharply because of the sensor measurement error and the pose error caused by the robot model. In view of this phenomenon,a new algorithm based on multi-innovation Kalman filtering( MR-AKF) is proposed. Based on the standard Kalman filter,when the measured value of the sensor is error,the robust weighting factor is introduced,and the estimation accuracy of the filter is improved by changing the weight of the error measurement value; when the robot pose is error,an adaptive factor is introduced to resist the filtering divergence caused by the pose error by adjusting the size of the state covariance matrix. At the same time,introduce multi-innovation which is the innovation vector of multiple moments to further improve the accuracy of the nonlinear system. The experimental results show that the filtering algorithm can effectively improve the positioning accuracy in the presence of measurement errors and pose errors.
关 键 词:抗差滤波 自适应卡尔曼滤波 权因子 自适应因子 多新息
分 类 号:TP31[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.18.110.187