检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学电子工程学院,成都611731 [2]北京宇航系统工程研究所,北京丰台区100076 [3]山东理工大学机械工程学院,山东淄博255000
出 处:《电子科技大学学报》2017年第5期654-659,665,共7页Journal of University of Electronic Science and Technology of China
基 金:国家自然基金面上项目(61671137);中央高校基本业务费(ZYGX2016J028);山东省自然科学基金教育厅联合专项(ZR2014JL027)
摘 要:室内定位的主要挑战是室内的多径传播及非平稳信道环境,传统基于信号强度指纹的单指纹室内定位方法由于受环境变化影响较大,稳健性较差且精度较低。针对此问题,提出一种基于D-S证据理论的群指纹融合高精度室内定位方法。在建库阶段,利用室内阵列信号接收模型,首先通过计算阵列接收信号的不同统计特性构建包括信号强度、协方差矩阵、信号子空间及四阶累积量组成的群指纹库,再对群指纹进行神经网络训练获取针对每种指纹的神经网络分类器;在实测阶段,把实测数据的上述4种变换输入到训练好的神经网络分类器中,最后利用D-S证据理论对神经网络分类器的分类结果进行融合,给出最终的定位结果。仿真结果证明了算法的有效性及可行性。该算法可充分发挥指纹信息的集群效应,对噪声、多径传播等具有较好的稳健性,是一种高精度的室内定位新方法。The main challenges of indoor localization come from multi-path propagation and non-stationary channel environment. Some classical localization approaches based on single received signal strength (RSS) fingerprint show low accuracy and bad robustness due to some environment changes. In this paper, we propose an accurate indoor localization algorithm by fusing group of fingerprints via Dampster-Shafer (D-S) evidence theory. The main idea can be summarized as follows: in off-line phase, first, based on the received data from a receiving array deployed in indoor environment, we calculate four fingerprints, namely, RSS, covariance matrix, signal subspace, and fourth-order cumulant. Secondly, these fingerprints are input to train four different classifiers by using back-propagation (BP) neural networks. In on-line phase, by calculating the corresponding transformations of the received signals of the array, we can obtain the predictions of these classifiers; then, we use D-S evidence theory to fuse the final localization results. The proposed algorithm can deal with different environment noise adaptively and show higher accuracy compared with some existing fingerprint-based algorithms. The performance of our proposed algorithm is verified by simulation results.
关 键 词:BP神经网络 D-S证据理论 群指纹融合 室内定位 多径
分 类 号:TN96[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222