判别外观模型下的寻优匹配跟踪算法  被引量:3

Optimal Matching Tracking Algorithm Based on Discriminant Appearance Model

在线阅读下载全文

作  者:刘万军[1,2] 刘大千[2] 费博雯 

机构地区:[1]辽宁工程技术大学软件学院,葫芦岛125105 [2]辽宁工程技术大学电子与信息工程学院,葫芦岛125105 [3]辽宁工程技术大学工商管理学院,葫芦岛125105

出  处:《模式识别与人工智能》2017年第9期791-802,共12页Pattern Recognition and Artificial Intelligence

基  金:国家自然科学基金项目(No.61172144);辽宁省科技攻关计划项目(No.2012216026)资助~~

摘  要:针对模型匹配跟踪算法易受遮挡、复杂背景等因素影响的问题,提出判别外观模型下的寻优匹配跟踪算法.首先,提取前5帧图像的局部特征块,建立由特征块组成的训练样本集,并利用颜色、纹理特征进行聚类组建判别外观模型.然后,利用双向最优相似匹配方法进行目标检测.为了解决复杂背景干扰,提出前景划分方法约束匹配过程,得到更准确的匹配结果.最后,定期将跟踪结果加入聚类集合以更新外观模型.实验表明,由于利用多帧训练的判别外观模型及双向最优相似匹配方法,算法在局部遮挡、复杂背景等条件下的跟踪准确率较高.Traditional model matching and tracking algorithms are easily influenced by the occlusion of other targets and the complex background. To solve these problems, an optimal matching tracking algorithm based on discriminant appearance model is proposed. Firstly, the local feature blocks of the previous 5 frames of the image sequences are extracted by sampling, and the training sample set consisting of a number of feature blocks is established. Then, the feature blocks with the same color and texture features are clustered to build a diseriminant appearance model. Secondly, the bi-direetional optimal similarity matching method is adopted for target detection. To avoid complex background interference, a method of foreground partition is proposed to acquire more accurate matching results. Finally, the tracking results are periodically added to the clustering collection to update the appearance model. The experimental results indicate that the proposed approach provides higher tracking accuracy under the conditions of partial occlusion and complex background by using the discriminant appearance model of multi-frame training and the bi-directional optimal similarity matching method.

关 键 词:训练样本集 判别外观模型 最优相似性匹配 双向校验 目标跟踪 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象