自同态环是NJ环的模及强NJ模的自同态环  

Modules with NJ Endomorphism Ring and Endomorphism Rings of Strongly NJ Module

在线阅读下载全文

作  者:成乐 努恩吉雅 刘琼玲 

机构地区:[1]河套学院理学系,内蒙古巴彦淖尔015000 [2]中国矿业大学数学学院,江苏徐州221116

出  处:《湘潭大学自然科学学报》2017年第3期5-8,共4页Natural Science Journal of Xiangtan University

基  金:河套学院自然科学青年项目(HTXYZQ13003)

摘  要:讨论了自同态环是NJ环的模以及强NJ模的自同态环.证明了abelian环上的投射模,若其自同态环是NJ环,则该模是强NJ模.通过例子说明了强NJ模的自同态环不一定是NJ环,证明了有限生成的强NJ模的自同态环是exchange环.证明了自同态环是NJ环的模,其直和项的自同态环也是NJ环.The objec t of this paper is discussing the modules wi th NJ endomorphism r ing and endomor-phism rings of st rongly NJ module. It is proved that a project module on abel ian rings wi th NJ endomor-phism rings is st rongly NJ module. It is shown through examples that the endomorphism rings of st rongly NJ module is not necessari ly be NJ ring,and the endomorphism rings of fini te generated st rongly NJ module is exchange ring. It is proved that endomorphism ring is NJ rings module, the direct summand is also NJ en-domorphism ring.

关 键 词:NJ环 自同态环 强NJ模 EXCHANGE环 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象