基于BP神经网络的焊管厂库存预测研究  

Research on Inventory Prediction of Welded Pipe Plant Based on BP Neural Network

在线阅读下载全文

作  者:刘腾达 杜天苍 

机构地区:[1]北京化工大学信息科学与技术学院,北京100029 [2]北京石油化工学院信息工程学院,北京102617

出  处:《北京石油化工学院学报》2017年第3期53-57,共5页Journal of Beijing Institute of Petrochemical Technology

摘  要:提升企业竞争力是管理科学的研究前沿,提高顾客满意度和降低库存成本是2个重要手段,库存控制已成为提高企业竞争力的关键因素。通过运用学习率自适应算法改进BP神经网络,然后用改进的神经网络并运用Matlab工具箱仿真实现对钢铁厂生产数据的网络训练,利用训练好的网络预测模型对焊管厂的实际安全库存进行预测。仿真及实际运行结果表明:该方法能够准确高效地预测焊管厂所需安全库存,可以为合理的库存提供决策支持,有效提高库存控制的效率。At present,the global steel industry is undergoing great recession,which leads to the fact that many enterprises,including several large Chinese iron and steel enterprises,fall in an overall loss.In this case,how to enhance the competitiveness of enterprises has become the research frontier of the management science.Improving customer satisfaction and reducing inventory costs are two primary means to achieve the goal.In this paper,the BP neural network is improved by using the learning rate adaptive algorithm,and then the improved neural network is used to simulate the production data of the steel plant by using the Matlab toolbox simulation.Adopting the trained network forecasting model,the actual safety stock is predicted.Results show that the proposed method can accurately and efficiently predict the security inventory needed by the welded pipe plant,and provide decision support for reasonable inventory to improve the efficiency of inventory control.

关 键 词:焊管厂 安全库存 BP神经网络 预测 

分 类 号:F274[经济管理—企业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象