检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康卫[1] 陈昊[2] 郝云力[1] KANG Wei CHEN Hao HAO Yun-li(School of Information Engineering, Fuyang Normal University, Fuyang Anhui 236041, China School of Mathematical Sciences, Huaibei Normal University, Huaibei Anhui 230039, China)
机构地区:[1]阜阳师范学院信息工程学院,安徽阜阳236041 [2]淮北师范大学数学科学学院,安徽淮北235000
出 处:《阜阳师范学院学报(自然科学版)》2017年第3期1-4,共4页Journal of Fuyang Normal University(Natural Science)
基 金:安徽省高校自然科学基金重点项目(KJ2016A555;KJ2016A625);安徽省中青年优秀人才基金项目(gxyq2017158);阜阳师范学院校级研究项目(2016FSKJ07)资助
摘 要:本文主要研究了具有时变时滞的离散线性系统的有限时间稳定性问题。首先构造一个新颖的李雅普诺夫泛函,然后结合离散形式的Wirtiner-based不等式和倒凸不等式技巧,给出了系统有限时间稳定的线性矩阵不等式形式。最后,给出了一个数值实例来诠释了本文的方法能够减少系统的保守性以及通过数值仿真说明结果的可行性。In this paper, the problem of finite-time stability for discrete-time system with time-varying delay is investigated. By constructing a novel Lyapunov-Krasovskii fimctional and discrete Wirtinger-based inequality, reciprocally convex approach, the improved finite-time stability criteria are derived in form of linear matrix inequalities. Finally, a numerical example is given to show the less conservatism and effectiveness of the proposed method.
关 键 词:时变时滞 有限时间稳定 离散系统 线性矩阵不等式
分 类 号:O231[理学—运筹学与控制论] O193[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43