检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学电气工程学院,四川成都610031 [2]江苏(丹阳)高性能合金材料研究院,江苏丹阳212300
出 处:《铁道学报》2017年第10期76-81,共6页Journal of the China Railway Society
基 金:国家自然科学基金(U1134205;51007074;51407147);中央高校基本科研业务费专项资金(2682015CX031)
摘 要:现有接触网的三维重建所需时间较长,工作繁琐,为解决此类问题,本文提出采用自动重建法利用点云数据实现其零部件的三维重建。点云配准是影响重建过程准确度及效率的重要因素,而目前普遍使用的SIFT匹配算法,由于构建的关键点特征向量维数高,计算量大,导致匹配速度慢。为解决此问题,本文提出利用均匀模式LBP特征值描述SIFT关键点,获取关键点特征向量,并用向量间的距离判断关键点的相似性,以确定关键点的对应关系,完成配准和重建,得到接触网零部件的三维模型。结果表明,本文所提算法可行有效,能提高匹配速度,加速三维重建。The methods of 3D reconstruction of catenary s y s t e m currently used are t i m e - c o n s u m i n g a n d full of heavy workload. In order to address this problem, a method using optical instruments to acquire point cloud data for the automated reconstruction of catenary parts was proposed in this paper. The process of point cloud registration is crucial to the efficiency and accuracy of the entire 3D reconstruction process. The SIFT algo-rithm is known as the most widely used local feature-based matching algorithm with high performance, but the intensive computation and high vector dimension of building eigenvectors for key points affect matching speed. To solve this problem, LBP eigenvalues in uniform pattern were used to describe the SIFT key points to obtain the eigenvectors of the key points. The distance between vectors was used to determine the similarity of key points to identify the correspondence of two key points in different point clouds. Then coarse registration, fine registration and surface reconstruction were completed, and the 3D reconstruction model of catenary parts was finally finished. Experimental results show that the proposed algorithm is able to realize the objective of impro-ving the matching speed, thus speeding up reconstruction process.
分 类 号:U225.4[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222