基于多属性模糊C均值聚类的属性约简算法  被引量:1

Attribute reduction algorithm based on multiattribute fuzzy C-means clustering

在线阅读下载全文

作  者:李诗瑾 李倩[1] 徐桂琼[1] 

机构地区:[1]上海大学管理学院,上海200444

出  处:《现代电子技术》2017年第21期112-116,共5页Modern Electronics Technique

基  金:国家自然科学基金(11201290)

摘  要:模糊C均值聚类算法在处理高维数据集时,存在计算复杂度高,算法泛化能力差,计算精度低等问题。考虑到特征属性对聚类的贡献程度的差异,在多属性模糊C均值聚类的思想上,提出一种基于属性重要性的约简算法。为验证有效性,在UCI数据集上,将新算法与因子分析法和粗糙集理论约简方法进行比较分析。实验结果表明,该方法具有更好的泛用性,在平均标准差大或类间中心距离较远的数据集上具有更好的性能。The fuzzy C-means clustering algorithm used to process the high-dimensional datasets has the problems of high computational complexity,poor algorithm generalization ability and low calculation accuracy. Considering the difference of feature attribute for clustering contribution,a new reduction algorithm based on attribute importance is proposed on the basis of the thought of multiattribute fuzzy C-means clustering. In order to verify its validity,the comparative analysis was performed in UCI datasets for the proposed algorithm,factor analysis method and reduction method based on rough set theory. The experimental results show this method has wider application range,and better performance on the datasets whose average standard deviation is large or the inter-class centre distance is far.

关 键 词:数据挖掘 模糊C均值聚类 属性约简 聚类效果 

分 类 号:TN911.134[电子电信—通信与信息系统] TP391[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象