机构地区:[1]河南中医药大学,河南郑州450008 [2]河南中医药大学第一附属医院药学部,河南郑州450000 [3]国家中医药管理局中药制剂三级实验室,河南郑州450000
出 处:《中草药》2017年第20期4235-4244,共10页Chinese Traditional and Herbal Drugs
基 金:国家自然科学基金青年基金项目(81001646);国家自然科学基金面上项目(81774452);河南中医学院省属高校基本科研业务费优青培育项目(2014KYYWF-YQ01);河南省中医管理局中医药科学研究专项课题(2014ZY02066)
摘 要:目的采用电子舌技术研究羟丙基-β-环糊精(HP-β-CD)质量浓度(C)变化对苦味化合物及苦味中药的抑苦规律。方法以盐酸小檗碱、氧化苦参碱、苦参水煎液、穿心莲水煎液为苦味载体,基于口尝评价结果(ΔI)和电子舌信息(ΔI_e),分别建立ΔI-C、ΔI_e-C 2个抑苦规律模型、探索ΔI-ΔI_e两者的抑苦效果预测模型,并使用交叉验证和残差分析法对预测模型的拟合精度和优度进行评价。结果对4种苦味载体均建立了良好的ΔI-C威布尔抑苦规律模型,决定系数(R^2)依次为0.999 6、0.987 9、0.996 4、0.998 4(P<0.01);盐酸小檗碱、苦参水煎液和穿心莲水煎液的6个(每个载体2根传感器)ΔI_e-C威布尔抑苦规律模型的R^2依次为0.996 5、0.991 6、0.997 3、0.989 3、0.999 6、0.999 1(P<0.01);相应的6个ΔI-ΔI_e线性抑苦效果预测模型的R^2依次为0.989 1、0.968 3、0.989 0、0.982 0、0.977 9、0.986 1(P<0.01);上述6个预测模型交叉验证的相关系数(R)依次为0.986 0、0.997 3、0.988 4、0.960 8、0.980 2、0.983 9(P<0.01)。测试质量浓度范围内的氧化苦参碱对电子舌4根传感器均无随浓度变化的差异性响应,因此未能建立各类模型。结论基于电子舌方法得到了随HP-β-CD质量浓度变化的抑苦规律,建立了以HP-β-CD质量浓度或电子舌数据为基础的预测模型,可用于相关抑苦效果预测。部分苦味化合物对电子舌的响应没有相关规律,有待电子舌技术的进一步研发。Objective To study the bitterness inhibition law of hydroxypropyl-β-cyclodextrin(HP-β-CD) concentration(C) on the bitter compounds and bitter Chinese herbal medicine, and to explore the application of electronic tongue in this study. MethodsBerberine, oxymatrine, Sophora flavescens, and Andrographis paniculata decoction were used as bitterness vectors to establish two models of bitterness inhibition law about ΔI-C and ΔIe-C, and to explore the prediction model of bitterness inhibition effect about ΔI-ΔIe, based on the oral taste evaluation results(ΔI) and electronic tongue information(ΔIe). Then, fitting precision and fitting goodness of the prediction model were evaluated with cross-validation and residual analysis. Results In this study, good Weibull model of bitterness inhibition pattern about ΔI-C were established for all the four bitterness vectors, the decision coefficient R-2 are as followed: 0.999 6, 0.987 9, 0.996 4, and 0.998 4(P〈0.01); The decision coefficient R-2 of six(two sensors per vector) models of bitterness inhibition law about ΔIe-C of berberine, S. flavescens, and A. paniculata decoctions were as followed: 0.996 5, 0.991 6, 0.997 3, 0.989 3, 0.999 6, and 0.999 1(P〈0.01); The decision coefficient R-2 of six corresponding linear prediction models of bitterness inhibition effect about ΔI-ΔIe were as followed: 0.989 1, 0.968 3, 0.989 0, 0.982 0, 0.977 9, and 0.986 1(P〈0.01); The correlation coefficient R calculated by correlation coefficient of six prediction models above were as followed: 0.986 0, 0.997 3, 0.988 4, 0.960 8, 0.980 2, and 0.983 9(P〈0.01); No model was established for oxymatrine within the range of tested concentration in this research, as it didn't respond to the four sensors with varied concentration. Conclusion Based on this method, the bitterness inhibition law of HP-β-CD with changed concentration was obtained. Prediction models based on HP-β-CD concentration or electronic tongue data were also established, th
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...