分布式驱动汽车自适应差速仿真研究  被引量:10

Simulation research on self-adaptive differential of distributed drive electric vehicle

在线阅读下载全文

作  者:唐自强 龚贤武[2] 赵轩 许世维 贺伊琳 

机构地区:[1]上海汽车集团股份有限公司技术中心,上海201804 [2]长安大学汽车学院,陕西西安710064 [3]长安大学电子与控制工程学院,陕西西安710064

出  处:《合肥工业大学学报(自然科学版)》2017年第10期1320-1325,共6页Journal of Hefei University of Technology:Natural Science

基  金:国家高技术研究发展计划(863)资助项目(2012AA111106);国家自然科学基金青年科学基金资助项目(51507013);中央高校基本科研业务费专项资金资助项目(310822151025;310822161002;2014G1321040);陕西省自然科学基础研究计划资助项目(2014JQ7269)

摘  要:文章针对分布式驱动电动汽车转向电子差速策略进行研究。分析了目前转向电子差速策略,基于车辆转向行驶动力学以及开放式机械差速器工作原理,提出了转向时驱动电机等转矩分配的自适应电子差速策略;基于Matlab/Simulink和Carsim建立的分布式驱动电动汽车联合仿真平台,对比分析了不同转向行驶工况时等转矩分配电子差速策略的分布式驱动电动汽车和开放式机械差速器的集中式驱动电动汽车的差速性能以及操纵稳定性。仿真结果表明,2种驱动方式电动汽车的差速性能相同,相比于集中式驱动电动汽车的转向操纵稳定性,分布式驱动电动汽车转向操纵稳定性稍差。The control strategy of electronic differential for distributed drive electric vehicle was stud- ied. The existing electronic differential strategies were analyzed, and by analyzing the steering dynam- ics and the working principle of open mechanical differential, the self-adaptive electronic differential strategy of equal torque allocation under steering condition was proposed. Based on the co-simulation platform of Carsim and Matlab/Simulink for distributed drive electric vehicle, and under different steering conditions, the differential performances and steering stability of the distributed drive electric vehicle with self-adaptive electronic differential strategy and the concentrated drive electric vehicle with open mechanical differential were analyzed and compared. The simulation results show that the differential performances are the same for two kinds of driving modes, but the steering stability of the distributed drive electric vehicle is slightly lower than that of the concentrated drive electric vehicle.

关 键 词:分布式驱动电动汽车 电子差速 Carsim/Simulink联合仿真 等转矩分配 

分 类 号:U469.72[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象