一种基于深度学习的离散化交通状态判别方法  被引量:7

A Method of Discrete Traffic State Identification Based on Deep Learning

在线阅读下载全文

作  者:吴志勇[1,2] 丁香乾[1] 鞠传香[2] 

机构地区:[1]中国海洋大学信息科学与工程学院,山东青岛266100 [2]山东理工大学计算机科学与技术学院,山东淄博255000

出  处:《交通运输系统工程与信息》2017年第5期129-136,共8页Journal of Transportation Systems Engineering and Information Technology

基  金:淄博市校城融合发展计划(2016ZBXC003);国家重点研发计划(2016YFB1001103)~~

摘  要:在智能交通信号控制和交通流诱导系统中,交通环境状态的有效判别是影响交通控制决策的先决条件,本文针对交通流产生的大数据信息,结合深度学习算法提出一种离散化交通状态的判别方法.给出了包括交通状态数据采集、状态数据描述、状态深度学习和判别等功能模块的系统架构,构建了一种离散交通状态编码方法,为深度学习交通状态特征提供了数据基础.模型训练阶段,对采集到的二值和连续值交通状态数据,分别构建了两种不同的深度置信网络实现交通状态特征的无监督学习;模型微调阶段,在整合形成的高层抽象特征向量顶端增加softmax分类器,采用反向传播算法实现参数微调.最后,该方法基于VISSIM微观交通软件进行仿真,实验结果表明,离散交通状态编码方法可有效表达交通状态,基于深度学习的交通状态判别方法相对传统方法具有较高的准确度.In the intelligent transportation signal control and traffic flow guidance system, effective identification of the traffic state of the environment is a prerequisite for traffic control. Facing large scale of traffic data sets, this paper proposes a identification method of discrete traffic state based on deep learning.The system architecture include four parts of traffic state data acquisition, data description, deep learning and identification. A discrete traffic state encoding method is proposed which provide the base for deep learning of traffic state. In the phase of model training, two deep belief networks including TEDBN and TVDBN are constructed and trained for features learning with the traffic state data of binary value and continuous value.In the phase of model fine-tuning, a softmax classifier is added on the top of all high-level abstraction features, and the back-propagation algorithm is used to fine tune the parameters. At last, the method is validated on the VISSIM simulation software. The experimental results show that the method of discrete traffic state encoding can effectively express the traffic state, and the identification method based on deep learning has higher accuracy than the traditional method on the traffic state.

关 键 词:智能交通 交通状态判别 深度学习 交通状态 离散化交通状态编码 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象