检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东理工大学交通与车辆工程学院,淄博255049
出 处:《科学技术与工程》2017年第28期91-97,共7页Science Technology and Engineering
摘 要:针对车辆检测中的阴影问题,提出了一种基于主成分分析算法(principal component analysis,PCA)的交通视频车辆阴影消除算法。该算法通过引入PCA算法确定阴影区域的方位,将算法的计算复杂度降低了3/4,提高了检测效率。基于亮度与纹理的分布特征,提出了一种IT(inverse transformation)模型将阴影区域转化为与其相应背景相似的分布以弱化阴影,从而使阴影像素在背景差法中被检测为背景像素与运动车辆分离。实验表明,本文算法阴影检测与分辨率高,阴影消除效果好,显著提高了检测的准确性。To the shadowing problem in vehicle detection, a shadow elimination algorithm for vehicles in trafficvideo is proposed using the principal component analysis ( PCA) . The orientation of the shadow areby PCAfor the algorithm to greatly reduce the complexity of the shadow detection algorithm and improve the detec-tion efficiency. Based on the distribution characteristics of brightness and texture, a IT ( inverse transformation)model is proposed to transform the shaded area into a distribution similar to it’so that t!ie shadow pixels are detected as background pixels separated from the moving vehicle in the backgrounddifference method. Experiments show that t!ie proposed algorit!im has high shashadow elimination and improves significantly the accuracy of detection. Experiment reshave highly shadow detection rate and resolution rate, it can efectively eliminate detection is improved significantly.
关 键 词:车辆检测 主成分分析算法(PCA算法) 阴影弱化 阴影消除
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.188.252