检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310023
出 处:《计算机科学》2017年第B11期297-301,共5页Computer Science
基 金:国家自然科学基金项目(61302129)资助
摘 要:现有以航位推算为基础的室内定位算法存在累积误差大、定位精度较低等缺点,为此提出一种基于地图信息和位置自适应修正的粒子滤波室内定位方法。该方法利用已知的室内地图信息在定位过程中控制粒子的生灭,在重采样过程中根据粒子的退化情况对补偿粒子的位置进行自适应调整,从而修正目标位置。实验结果表明,该定位方法克服了航位推算算法的累积误差问题,有效提高了定位精度。As the existing indoor localization algorithm based on dead reckoning has the disadvantages of high cumula-t ive error and low localization accuracy, an indoor localization approach based on map informat ion and particle filter with position adaptive correction was proposed in this paper. The approach uses the known map informat ion to control the birth and death of the particles during the localization process,and adaptively adjusts the positions of the compensating particles in the resampling stage according to the situation of particle degeneracy, thereby correcting the object position. The experimental results show that the proposed approach overcomes the shortcoming of cumulative error of dead re-ckoning algorithm and improves the localization accuracy.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30