检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学水利科学与工程学院,太原030024
出 处:《节水灌溉》2017年第11期27-30,共4页Water Saving Irrigation
基 金:国家自然科学基金项目"区域尺度上土壤入渗参数多元非线性传输函数研究"(40671081)
摘 要:基于黄土高原系列大田入渗试验数据,以土壤体积含水率、干容重、黏粒含量、粉粒含量、有机质含量为输入因子,采用支持向量机和BP神经网络两种算法,对Kostiakov二参数入渗模型参数进行预测,并对两种算法下预测结果的相对误差值进行分析,结果表明:采用支持向量机算法对入渗系数和入渗指数进行预测的结果相对误差最大值和平均值都比BP算法的预测结果要小,相对误差最小值比BP算法的预测结果要大;支持向量机算法比BP算法所得预测结果的稳定性好,精确度高。研究结果丰富了采用土壤传输函数获取入渗参数这一研究方向,同时为获取更高精度的入渗参数在方法的选取上提供一定的理论依据。Based on the land infiltration test data of the Loess Plateau, the parameters of the Kostiakov infiltration model were predicted by using two algorithms of support vector machine and BP neural network with the input parameters of the soil water content, bulk density, clay content, silt particle content and organic matter. And the relative errors of the prediction results were analyzed. The results showed that the maximum relative error value and the average relative error value of the prediction results of infiltration coefficient and infiltration index by using support vector machine were both smaller than those by using BP neural network while the least relative error value was bigger. The stability of the prediction results by support vector machine was better than that by BP neural network and the precision was higher. The results enriched the research trend of determining infiltration parameters with pedo-transfer functions and provided a theoretical basis for the selection of the method to obtain more precise infiltration parameter.
关 键 词:支持向量机 BP神经网络 Kostiakov入渗模型 误差分析 土壤理化参数
分 类 号:S152[农业科学—土壤学] TV93[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229