检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学航空航天学院,上海200240 [2]Technische Universitaet München,Munich D-80333,Germany
出 处:《计算机应用研究》2017年第12期3820-3824,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(U1406404,61331015)
摘 要:航拍图像往往具有场景复杂、数据维度大的特点,对于该类图像的自动分类一直是研究的热点。针对航拍原始数据特征维度过高和数据线性不可分的问题,在字典学习和稀疏表示的基础上提出了一种结合核字典学习和线性鉴别分析的目标识别方法。首先学习核字典并通过核字典获取目标样本的稀疏表示,挖掘数据的内部结构;其次采用线性鉴别分析,加强稀疏表示的可分性;最后利用支持向量机对目标进行分类。实验结果表明,与传统基于子空间特征提取的算法和基于字典学习的算法相比,基于核字典学习与鉴别分析的算法分类性能优越。Automatic classification of aerial images is one of the most challengeable tasks due to its high-dimension data and complex context. In order to tackle the problems of high feature dimension and linearly inseparable in original data,this paper proposed a recognition algorithm combining kernel dictionary learning and discriminant analysis based on dictionary learning and sparse representation. First of all,it learned a kernel dictionary that explored the underlying structure of data,then obtained the sparse representations of samples by the kernel dictionary. Secondly,it employed the linear discriminant analysis to make these sparse representations more separable. Finally,it used classical support vector machine for classification. Experimental results show that this method based on kernel dictionary learning and discriminant analysis has superior recognition performance in comparison with the methods based on traditional feature extraction in subspace and dictionary learning.
关 键 词:目标分类 稀疏表示 核字典学习 线性鉴别分析 支持向量机
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15