海河流域汛期降水量多尺度分析及预测研究  被引量:15

在线阅读下载全文

作  者:魏琳[1] 徐姝[2] 张治倩[1] 

机构地区:[1]海河水利委员会水文局,天津300170 [2]天津市气象台,天津300074

出  处:《水利规划与设计》2017年第10期60-63,86,共5页Water Resources Planning and Design

摘  要:文章利用完全集合经验模态分解(CEEMDAN)方法,对海河流域汛期(6~9月)降水进行多尺度分析,并识别其演变模式,获得各本征模函数(IMF),然后结合利用最近邻抽样回归模型(NNBR)、自回归模型(AR)、神经网络模型等多种方法对分解的各模态进行建模,选出最佳模型进行预测。经过对比分析,各模态最佳模型分别为神经网络模型与AR模型。因此文章采用CEEMDAN与神经网络及AR模型相结合的方法对海河流域汛期降水进行预测,并且同回归模型及单一的NNBR模型的预测值作比较研究。结果表明文章采用的模型稳定性好,能合理的预测海河流域汛期降水演变趋势,提高中长期汛期降水预测精度,具有一定的应用价值。

关 键 词:海河流域 CEEMDAN 神经网络 AR模型 汛期降水 中长期预测 

分 类 号:TV125[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象