检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海河水利委员会水文局,天津300170 [2]天津市气象台,天津300074
出 处:《水利规划与设计》2017年第10期60-63,86,共5页Water Resources Planning and Design
摘 要:文章利用完全集合经验模态分解(CEEMDAN)方法,对海河流域汛期(6~9月)降水进行多尺度分析,并识别其演变模式,获得各本征模函数(IMF),然后结合利用最近邻抽样回归模型(NNBR)、自回归模型(AR)、神经网络模型等多种方法对分解的各模态进行建模,选出最佳模型进行预测。经过对比分析,各模态最佳模型分别为神经网络模型与AR模型。因此文章采用CEEMDAN与神经网络及AR模型相结合的方法对海河流域汛期降水进行预测,并且同回归模型及单一的NNBR模型的预测值作比较研究。结果表明文章采用的模型稳定性好,能合理的预测海河流域汛期降水演变趋势,提高中长期汛期降水预测精度,具有一定的应用价值。
关 键 词:海河流域 CEEMDAN 神经网络 AR模型 汛期降水 中长期预测
分 类 号:TV125[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.199.33