检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学理学院,陕西西安710055
出 处:《湖北工程学院学报》2017年第6期66-72,共7页Journal of Hubei Engineering University
基 金:国家自然科学基金青年科学基金(61403298);中国博士后科学基金(2017M613087)
摘 要:深度学习是机器学习领域的研究热点,它使机器学习更加接近人工智能。作为深度学习的一类经典模型,卷积神经网络已被广泛应用于语音识别、图像识别和自然语言处理等领域中。本文探讨了卷积神经网络的基本原理、实现及应用。首先回顾了卷积神经网络的发展历史,阐述了它的基本原理,研究了卷积层和下采样层;其次总结了卷积神经网络的三大重要特性:稀疏连接、权值共享和池采样,并将卷积神经网络应用在MNIST手写体数字识别任务中;最后指出了卷积神经网络未来的重点研究方向。Deep learning is a new research focus in the field of machine learning and its emergence makes machine learning closer to the goal of artificial intelligence. A s a classical model in deep learn-ing, convolution neural network has been widely applied in the fields of speech recognition, image rec-ognition, natural language processing, etc. This paper discussed the basic principle, realization and applications of convolution neural network. Firstly, it reviewed the history of convolution neural net-work and elaborated its basic principle of convolution neural network and investigated the convolution layer and the sub - sampling layer. Secondly, it summarized the three important characteristics of con-volution neural network, i.e., sparse connection, weight sharing and sub - sampling. The handwrit-ten digits recognition task of convolution neural network was also realized in the MNIST database. Finally, it gave future key research directions for convolution neural network.
关 键 词:卷积神经网络 深度学习 卷积 下采样 手写体数字识别
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3