检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州测绘学院地理信息工程系,郑州450000
出 处:《模式识别与人工智能》2017年第11期1003-1011,共9页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.41201390);河南省科技创新(中原学者)项目(No.142101510005)资助~~
摘 要:图像相似度计算是众多视觉任务中不可或缺的关键环节,因此文中提出基于相似矩阵自适应加权的实景图像相似度计算方法.首先将图像划分为均匀图像块,基于卷积神经网络构建各图像块的特征描述符.然后计算各图像块间的相似度,组成相似矩阵.最后分析相似矩阵中的数据分布,确定图像对包含同一场景的概率,根据相似矩阵中的数据差异计算各单元相似度权值,确定整幅图像的相似度.实验表明,相比已有方法,文中方法在图像检索应用中鲁棒性更高,可以有效解决即时定位与地图构建中的闭环检测问题.Image similarity measurement is crucial to many vision applications. A similarity measurement method based on adaptive weighting of similarity matrix is proposed in this paper. The image is firstly divided into the same-sized patches, and the convolutional neural networks are adopted to construct the descriptor of each patch. The patch similarities are calculated to constitute the similarity matrix. The probability of image pair coming from the same place is evaluated by analyzing the data distribution in similarity matrix. And the similarity weight of each unit is calculated based on the data difference. Ultimately, the overall image similarity is determined. The experimental results show that the proposed method is more robust than the existing ones in image retrieval. Moreover, it effectively solves the loop closure detection in simultaneous localization and mapping.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.83.123