并行间断有限元算法求解Navier-Stokes方程  

A Parallel Discontinuous Galerkin FEM for Solving Compressible Navier-Stokes Equations

在线阅读下载全文

作  者:马欣荣[1] 段治健[1] 谢公南 刘三阳 

机构地区:[1]咸阳师范学院数学与信息科学学院,陕西咸阳712000 [2]西北工业大学航海学院,西安710072 [3]西安电子科技大学数学与统计学院,西安710071

出  处:《应用数学和力学》2017年第12期1377-1388,共12页Applied Mathematics and Mechanics

基  金:国家自然科学基金(61401383);陕西省教育厅自然科学基金(17JK0831)~~

摘  要:间断Galerkin有限元方法非常适合在非结构网格上高精度求解Navier-Stokes方程,然而其十分耗费计算资源.为了提高计算效率,提出了高效的MIMD并行算法.采用隐式时间离散GMRES+LU-SGS格式,结合多重网格方法,当地时间步长加速算法收敛.为了保证各处理器间负载平衡,采用区域分解二级图方法划分网格,实现内存合理分配,数据只在相邻处理器间传递.数值模拟了RAE2822翼型和M6黏性绕流,加速比基本呈线性变化且接近理想值.结果表明了该算法能有效减少计算时间、合理分配内存,具有较高的加速比和并行效率,适合于MIMD粗粒度科学计算.Based on unstructured grids,discontinuous Galerkin finite element methods( DGFEM) are very suited to realize high-order approximations of Navier-Stokes equations,but are rather demanding in computing resources. In order to improve the computational efficiency of the DGFEM,an efficient parallel algorithm on distributed-memory multicomputers coupled with the multigrid strategy based on the GMRES+LU-SGS procedure was presented here. The domain decomposition method was employed to handle meshes properly and make each processor maintain load balancing. Moreover,the LU-SGS and the local time stepping techniques were used to accelerate the convergence of the solution of Navier-Stokes equations.Numerical tests were conducted for viscid turbulence flow problems around the RAE2822 airfoil and over the M6 wing. The parallel acceleration is near to a linear convergence and up to the ideal solutions. The results indicate that the proposed parallel algorithm reduces computation time significantly and allocates memory reasonably with advantages of high acceleration and efficiency,and is very suited for coarsegrained scientific computation of MIMD models.

关 键 词:间断Galerkin有限元方法 NAVIER-STOKES方程 并行算法 区域分解算法 

分 类 号:O246[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象