检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘昊天[1] 姜海燕[1,2] 舒欣[1] 徐彦[1] 伍艳莲[1,2] 郭小清[1]
机构地区:[1]南京农业大学信息科技学院,南京210095 [2]南京农业大学国家信息农业工程技术中心,南京210095
出 处:《数据采集与处理》2017年第6期1239-1247,共9页Journal of Data Acquisition and Processing
基 金:国家重点研发计划(2016YFD0300607)资助项目;江苏省农业科技自主创新资金(CX(16)1039)资助项目;中央高校基本科研业务费(KYZ201547)资助项目
摘 要:针对多物种鸟声识别中多物种鸟声样本不足的问题,尝试采用单物种鸟声样本训练多物种鸟声识别模型,并提出一种基于特征迁移的多物种鸟声识别方法。该方法引入特征迁移学习算法,利用最大均值差异(Maximum mean discrepancy,MMD)度量鸟声样本特征分布差异,将不同分布的单物种鸟声和多物种鸟声的音频特征映射为同分布的潜在音频特征,再基于同分布的音频特征构造识别模型。使得单物种鸟声样本训练的识别模型也能够适用于多物种鸟声识别。在自然形成的多物种鸟声数据集上,算法在4项多标记评价指标上都取得了较好的识别效果;在人工构造的多物种鸟声数据集上对比试验表明,基于特征迁移的识别算法在单个物种上的正确识别率相较于对比算法最高提升了20%。To deal with the problem of inadequate sample in multiple bird species recognition, a new rec- ognition method of multiple bird species in audio recordings is proposed based on feature transfer, which uses bird sounds of single species to train a multiple bird species recognition model. Maximum mean dis- crepancy (MMD) is used to measure the feature distributions difference of bird sounds, which maps audio feature of single-species bird sounds and multiple-species bird sounds into a new latent feature with the same distribution. Then single-species bird sounds with latent feature can be used to train a model of multiple-species bird sounds. The experimental result shows that method can achieve good regognition performance in a natural multiple-species bird sounds dataset based on four multi-label metrics. The recognition rate of proposed method increases by 20 % compared with other methods in an artificial multiplespecies bird sounds dataset.
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112