检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭桥宇 余国先[1] 王峻[1] 郭茂祖 TAN Qiao-Yu;YU Guo-Xian;WANG Jun;GUO Mao-Zu(College of Computer and Information Science, Southwest University, Chongqing 400715, China;School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)
机构地区:[1]西南大学计算机与信息科学学院,重庆400715 [2]北京建筑大学电气与信息工程学院,北京100044
出 处:《软件学报》2017年第11期2851-2864,共14页Journal of Software
基 金:国家自然科学基金(61402378;61571163;61532014;61671189);重庆市基础与前沿研究项目(cstc2014jcyj A40031;cstc2016jcyj A0351)~~
摘 要:弱标记学习是多标记学习的一个重要分支,近几年已被广泛研究并被应用于多标记样本的缺失标记补全和预测等问题.然而,针对特征集合较大、更容易拥有多个语义标记和出现标记缺失的高维数据问题,现有弱标记学习方法普遍易受这类数据包含的噪声和冗余特征的干扰.为了对高维多标记数据进行准确的分类,提出了一种基于标记与特征依赖最大化的弱标记集成分类方法 En WL.En WL首先在高维数据的特征空间多次利用近邻传播聚类方法,每次选择聚类中心构成具有代表性的特征子集,降低噪声和冗余特征的干扰;再在每个特征子集上训练一个基于标记与特征依赖最大化的半监督多标记分类器;最后,通过投票集成这些分类器实现多标记分类.在多种高维数据集上的实验结果表明,En WL在多种评价度量上的预测性能均优于已有相关方法.Weak label learning is an important sub-branch of multi-label learning which has been widely studied and applied in replenishing missing labels of partially labeled instances or classifying new instances.However,existing weak label learning methods are generally vulnerable to noisy and redundant features in high-dimensional data where multiple labels and missing labels are more likely present.To accurately classify high-dimensional multi-label instances,in this paper,an ensemble weak label classification method is proposed by maximizing dependency between labels and features (EnWL for short).EnWL first repeatedly utilizes affinity propagation clustering in the feature space of high-dimensional data to find cluster centers.Next,it uses the obtained cluster centers to construct representative feature subsets and to reduce the impact of noisy and redundant features.Then,EnWL trains a semi-supervised multi-label classifier by maximizing the dependency between labels and features on each feature subset.Finally,it combines these base classifiers into an ensemble classifier via majority vote.Experimental results on several high-dimensional datasets show that EnWL significantly outperforms other related methods across various evaluation metrics.
关 键 词:弱标记学习 高维数据 特征子集 依赖最大化 集成分类
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.115.102