利用Riccati方程求解Burgers方程  被引量:7

Solving Burgers Equation Using Riccati Equations

在线阅读下载全文

作  者:林府标 LIN Fu-biao(School of Mathematics and Economics, Guizhou University of Finance and Economics, Guiyang 550025, Chin)

机构地区:[1]贵州财经大学数统学院,贵州贵阳550025

出  处:《数学的实践与认识》2017年第21期260-264,共5页Mathematics in Practice and Theory

基  金:2017年度贵州财经大学引进人才科研项目

摘  要:应用李群理论中的伸缩变换群,把非线性二阶偏微分方程-Burgers方程转化为非线性非齐次一阶常微分方程-Riccati方程,将Riccati方程转化为Bernoulli方程和齐次线性二阶常微分方程,从而找到了Riccati方程的许多解,最后进一步求出了Burgers方程许多新的解析解.In relevant reference by applying scaling group of Lie group theory, the second- order nonlinear partial differential equation-Burgers equation is reduced to nonhomogeneous first-order nonlinear ordinary differential equation-Riccati equation. However, in this paper, Riccati equation is converted into Bernoulli equation and homogeneous second-order linear ordinary differential equation, which leads to many solutions of Riccati equation are found, finally a lot of new solutions of Burgers equation are presented.

关 键 词:Riccati方程 BERNOULLI方程 齐次线性二阶常微分方程 非线性二阶偏微分方程 BURGERS方程 精确解 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象