全矩阵环上理想包含图的自同构群  

Automorphisms of an Inclusion Ideal Graph over a Total Matrix Ring

在线阅读下载全文

作  者:陈莉 

机构地区:[1]中国矿业大学数学学院

出  处:《数学学报(中文版)》2018年第1期135-142,共8页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金资助项目(11571360)

摘  要:设R是一个环,其上的理想包含图,记为ГI(R),是一个有向图,它以R的非平凡左理想为顶点,从R的左理想I1到I2有一条有向边当且仅当I1真包含于I2.环R上的理想关系图,记为Гi(R),也是一个有向图,它以R为顶点集,从R中元素A到B有一条有向边当且仅当A生成的左理想真包含于B生成的左理想.设Fq为有限域,其上n阶全矩阵环记为Mn(Fq),本文刻画了环Mn(Fq)上的理想包含图以及理想关系图的任意自同构.The inclusion ideal graph of a ring R, written as ГI(R), is a directed graph which has all nontrivial left rings of R as vertex set and there is a directed edge from a vertex I1 to a distinct vertex I2 if and only if I1 is properly contained in I2. In addition, the ideal-relation graph of a ring R, written as Fi(R), is also a directed graph which has R as vertex set and there is a directed edge from a vertex A to a distinct vertex B if and only if the left ideal of R generated by A is properly contained in the left ideal generated by B. Let Fq be a finite field, the set of n × n matrices over Fa be denoted by Mn(Fq). In this paper, both the automorphisms of ГI(Mn(Fq)) and the automorphisms of Гi (Mn(Fq)) are characterized.

关 键 词:理想包含图 理想关系图 图自同构 全矩阵环 有限域 

分 类 号:O157[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象