检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国水产科学研究院淡水渔业研究中心/农业部淡水渔业和种质资源利用重点实验室,江苏无锡214081
出 处:《江苏农业科学》2017年第23期217-221,共5页Jiangsu Agricultural Sciences
基 金:现代农业产业技术体系专项(编号:CARS-49);中央级公益性科研院所基本科研业务费专项资金(编号:2015JBFM22)
摘 要:针对池塘溶解氧浓度受较多因素影响的复杂性,选择基于广义回归网络(general regression neural network,简称GRNN)、Elman神经网络和BP(back propagation)神经网络算法构建关于溶解氧的预测模型,并将模型应用于水产养殖池塘溶解氧的预测中,力求找到能够长期预测池塘溶解氧浓度的有效方法。研究结果表明,GRNN和Elman神经网络模型的拟合效果均比BPNN(back propagation neural network)的拟合效果好,且有较高的预测精度,平均相对误差绝对值分别为7.48%、11.03%。同时,GRNN和Elman网络模型的算法稳定,计算复杂性低,因此2个模型适合对溶解氧浓度进行预测,有一定的应用价值,可以为水产养殖管理提供依据。
关 键 词:溶解氧 GRNN神经网络 ELMAN神经网络 BP神经网络 水产养殖管理
分 类 号:S126[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70