检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国网北京市电力公司昌平供电公司,北京102200 [2]中国电力科学研究院,北京100192 [3]华北电力大学控制与计算机工程学院,北京102206 [4]华北电力大学电气与电子工程学院,北京102206
出 处:《科技导报》2017年第24期66-70,共5页Science & Technology Review
基 金:国家电网公司科技项目(52094017002U)
摘 要:介绍了批量处理时间序列数据情况下,基于台区负荷特性聚类的样本自适应反向传播神经(BP)神经网络预测短期电力负荷的方法,通过对历史数据的预处理、初始聚类中心的设置以及最优聚类数目的确定,建立典型日负荷曲线的聚类预测模型。基于历史数据的聚类结果及待预测日的温度、湿度、气压、风速、星期等相关参数,使用BP神经网络算法得出待预测日负荷曲线预测结果。通过实例验证,基于台区负荷特性聚类的样本自适应神经网络短期负荷预测能够得到较为准确的预测结果。This paper introduces the methods and the steps of predicting the power load by the BP neural network with cluster optimization in batch processing time series. Through the preconditioning of historical data, the setting of the initial clustering center and the determination of the optimal number of clusters, a clustering prediction model of the load curve is established based on the clustering results of the historical data and the relevant parameters such as the temperature, the humidity, the air pressure, the wind speed and the time (the current week). The results show that with the clustering algorithm, the related factors and the BP network adaptive rate can be comprehensively considered, while the training speed is improved, to obtain more accurate prediction results.
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222