检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院成都计算机应用研究所,成都610041 [2]中国科学院大学,北京100049
出 处:《计算机应用》2017年第A02期107-111,共5页journal of Computer Applications
摘 要:针对核相关滤波算法(KCF)在物体跟踪过程中因难以适应物体尺度变化、非刚性形变,容易出现跟踪丢失或者混淆的现象,提出一种结合卷积神经网络(CNN)深度模型和核相关滤波来进行跟踪的方法。首先,利用线下大量样本训练得到一个卷积神经网络分类模型;其次,目标跟踪过程中在卷积神经网络模型提取到的特征空间中用核相关滤波训练得到一个回归模型;最后,利用得到的回归模型对下一帧中的目标位置进行预测。理论上证明了在卷积神经网络特征空间进行核相关滤波操作的合理性,并通过跟踪对比实验表明相比利用原始像素或者方向梯度直方图(HOG)特征,新的跟踪算法在背景复杂情况下的平均预测偏移降低为原来的34.25%,并且通过利用GPU加速能达到实时的效果。Object tracking with Kernelized Correlation Filter( KCF) is difficult to adapt to target scale change and nonrigid deformation, which is prone to result in object missing or confusion during target tracking. In order to overcome this shortcoming, a new method based on Convolutional Neural Network( CNN) and KCF was proposed. A neural network classification model was trained by a large amount of training samples off-line, and a ridge regression to predict the position of target in the next frame during the process of target tracking was obtained in the feature space extracted by the convolutional model. It is proved theoretically that it is reasonable to carry out kernelized correlation in the feature space of convolutional network and the final experiments show that the average prediction bias of the new algorithm is reduced to 34. 25% compared with the KCF in original pixel or Histogram of Oriented Gradients( HOG) feature, which can achieve real-time results by acceleration of GPU.
关 键 词:卷积神经网络 核相关滤波 深度学习 目标跟踪 特征空间
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28