检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]甘肃民族师范学院数学系,甘肃合作747000
出 处:《深圳大学学报(理工版)》2018年第1期99-104,共6页Journal of Shenzhen University(Science and Engineering)
基 金:甘肃省高等学校科研资助项目(2017A-139)~~
摘 要:考察矩阵随机赋范空间上函数方程的Ulam稳定性.结合矩阵赋范空间和随机赋范空间的定义,给出矩阵随机赋范空间的定义,证明其上的若干性质.利用不动点方法,在矩阵随机赋范空间上分别讨论了混合3次-4次函数方程4[f(3x+y)+f(3x-y)]=12[f(2x+y)+f(2x-y)]-12[f(x+y)+f(xy)]+f(2y)-8f(y)+30f(2x)-192f(x)为奇映射和偶映射时候的Ulam稳定性,证明了在满足一定的条件下混合3次-4次函数方程在矩阵随机赋范空间上满足Ulam稳定性的结论.We mainly investigates the Ulam stability of functional equations on matrix random normed spaces.Firstly,combining the definition of matrix normed spaces with the random normed spaces,we obtain the definition of matrix random normed spaces,and prove some properties on the spaces. Then,by using the fixed point method,we discuss the Ulam stability of functional equation deriving from quartic and cubic functions 4[f( 3 x + y) + f( 3 x-y) ]= 12[f( 2 x + y) + f( 2 x-y) ]-12[f(x + y) + f(x-y)] + f(2y)-8 f(y) + 30 f(2x)-192 f(x) when they are odd mapping and even mapping on matrix random normed spaces. In the end,we prove that the functional equation deriving from quartic and cubic functions satisfies the Ulam stability on the matrix random normed spaces under certain conditions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.184.203