矩阵随机赋范空间上函数方程的Ulam稳定性  

The Ulam stability of functional equation on matrix random normed spaces

在线阅读下载全文

作  者:宋爱民 李跃武 

机构地区:[1]甘肃民族师范学院数学系,甘肃合作747000

出  处:《深圳大学学报(理工版)》2018年第1期99-104,共6页Journal of Shenzhen University(Science and Engineering)

基  金:甘肃省高等学校科研资助项目(2017A-139)~~

摘  要:考察矩阵随机赋范空间上函数方程的Ulam稳定性.结合矩阵赋范空间和随机赋范空间的定义,给出矩阵随机赋范空间的定义,证明其上的若干性质.利用不动点方法,在矩阵随机赋范空间上分别讨论了混合3次-4次函数方程4[f(3x+y)+f(3x-y)]=12[f(2x+y)+f(2x-y)]-12[f(x+y)+f(xy)]+f(2y)-8f(y)+30f(2x)-192f(x)为奇映射和偶映射时候的Ulam稳定性,证明了在满足一定的条件下混合3次-4次函数方程在矩阵随机赋范空间上满足Ulam稳定性的结论.We mainly investigates the Ulam stability of functional equations on matrix random normed spaces.Firstly,combining the definition of matrix normed spaces with the random normed spaces,we obtain the definition of matrix random normed spaces,and prove some properties on the spaces. Then,by using the fixed point method,we discuss the Ulam stability of functional equation deriving from quartic and cubic functions 4[f( 3 x + y) + f( 3 x-y) ]= 12[f( 2 x + y) + f( 2 x-y) ]-12[f(x + y) + f(x-y)] + f(2y)-8 f(y) + 30 f(2x)-192 f(x) when they are odd mapping and even mapping on matrix random normed spaces. In the end,we prove that the functional equation deriving from quartic and cubic functions satisfies the Ulam stability on the matrix random normed spaces under certain conditions.

关 键 词:基础数学 随机赋范空间 矩阵随机赋范空间 不动点方法 混合3次-4次函数方程 Ulam稳定性 

分 类 号:O177.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象