检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算力学学报》2018年第1期44-50,共7页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(11462014);江西省自然科学基金(20151BAB202003);江西省教育厅科技项目(GJJ14526;GJJ150752)资助项目
摘 要:数值流形方法(NMM)因其特有的双覆盖系统(数学覆盖和物理覆盖)在域离散方面具有独特的优势,而精细时间积分法则具有精度高、无条件稳定、无振荡以及计算结果不依赖于时间步长等特点。发展了用于研究二维瞬态热传导问题的精细积分NMM。结合待求问题的控制方程和边界条件,并基于修正变分原理导出了NMM的总体方程,给出了求解此类时间相依方程的精细时间积分及空间积分策略,选取了两个典型算例对方法的有效性进行了验证,结果表明本文方法可以高效高精度地求解瞬态热传导问题。Owing to the unique dual cover systems,i. e.,the mathematical cover system and the physical cover system,the numerical manifold method( NMM) is predominant method in domain discretization. As for the precise time integration method( PTIM),it is of high accuracy,absolutely stable,immune from oscillation and the solution is independent of the time step size. In this paper,the NMM,combined with the PTIM,is developed to study two-dimensional( 2 D) transient heat conduction problems. Based on the governing equations and associated boundary conditions,the NMM discrete equations for the considered problems are derived using the modified variational principle. The details of the PTIM and also the spatial integration scheme are presented for the solution of the time-dependent system of equations. To validate the proposed method,two typical numerical examples are carefully examined. The simulated results show that the 2 D unsteady heat conduction problems can be efficiently and accurately tackled by the present approach.
关 键 词:瞬态热传导 数值流形方法 精细积分 温度场 二维
分 类 号:TK124[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74