综合时频域及核判别分析的两级特征提取新方法  被引量:2

New method of two classes feature extraction based on kernel linear discriminant analysis following integrated time and frequency domains

在线阅读下载全文

作  者:孙贤明[1] 樊晓光[1] 禚真福[1] 丛伟[1] 陈少华[1] 

机构地区:[1]空军工程大学航空航天工程学院,西安710038

出  处:《计算机工程与应用》2018年第3期115-119,141,共6页Computer Engineering and Applications

基  金:航空自然科学基金(No.20142896022)

摘  要:为了解决模拟电路软故障诊断中特征提取不全面准确的问题,提出了一种基于综合时频域及核判别分析的两级特征提取新方法。首先,对采集到的故障响应信号分别提取均值、方差等时域统计特征和小波包分解后不同频带的能量作为频域特征;然后,通过核判别分析方法对故障特征进一步优选,从而保证故障特征的准确有效性;最后,将所得到的最优故障特征输入支持向量机进行故障诊断。对Sallen-Key带通滤波器电路的仿真实验结果表明,该方法能够很好地反映故障响应信号的本质特征,有效提高故障诊断的性能。In order to solve the problem of incomplete and inaccurate feature extraction in analog circuit soft fault diagnosis,a new method of two classes feature extraction based on Kernel Linear Discriminant Analysis(KLDA)following integrated time and frequency domains is proposed in this paper. At first, the statistics features in time domain such as mean, standard deviation and energies within different frequency bands by wavelet packet decomposition as frequency domain features are extracted from the acquired fault response signals. Then the kernel linear discriminant analysis method is used to further optimize and select fault features, which guarantees the validity on fault feature. Finally, the obtained optimal fault features are inputted into support vector machine to distinguish different faults. Experimental results on Sallen-Key band-pass filter circuit show that this method can reflect the essential characteristics of fault response signal and improve the performance of fault diagnosis effectively.

关 键 词:模拟电路软故障诊断 特征提取 小波包能量谱 时域统计特征 核判别分析 有向无环图支持向量机 

分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象