不完全微分与微分先行的农业机器人巡航PID控制算法  被引量:11

Incomplete Differential and Differential Forward Agricultural Robot Cruise PID Control Algorithm

在线阅读下载全文

作  者:李林升[1] 丁鹏 钟成 

机构地区:[1]南华大学机械工程学院

出  处:《机械设计与研究》2018年第1期45-49,共5页Machine Design And Research

基  金:湖南省科技重点计划(2015NK3033);衡阳市重点(2015KC06)资助项目;湖南省教育厅重点资助项目(15A160)

摘  要:为了解决传统PID控制在农业机器人控制中响应迟滞,稳态误差和敏感性较大等问题。在传统PID控制的基础上,引入了不完全微分,微分先行和“最优曲率”算法。首先针对传统PID微分环节对误差波动的敏感性较大,在微分环节加入滤波器,构成不完全微分算法,以减少误差敏感性。然后针对速度和方向设定值的不断变化给系统带来的动态波动,加入微分先行算法,提高系统的动态稳定性和系统的响应速度。最后结合最优曲率,制定动态的PID控制参数,进一步提高控制的精度。实验结果表明,相比于传统PID控制,该改进的PID控制算法使农业机器人稳定行驶速度由原来的2.4m/s达到了3m/s,农业机器人整圈完成度提高5%~10%。加速性、鲁棒性、可靠性得到较大的提高。In order to solve the problems of traditional PID control in response to hysteresis, steady state error and sensitivity in agricultural robot control. On the basis of traditional PID control, incomplete differential, differential first and " optimal curvature" algorithm are introduced. First, for the traditional PID differential link on the error fluctuations in the larger, in the differential link to join the filter, constitute an incomplete differential algorithm to reduce the error sensitivity. Then, the dynamic stability of the system and the response speed of the system are improved by adding the differential algorithm to the dynamic fluctuation caused by the change of the speed and direction setting value. Finally, combined with the optimal curvature, the development of dynamic PID control parameters, to further improve the control accuracy. The experimental results show that compared with the traditional PID control, the improved PID control algorithm makes the speed of agricultural robot stable speed from the original 2.4 m/s to 3 m/s, agricultural robot complete the degree of completion of 5% to 10%. Acceleration, robustness, reliability has been greatly improved.

关 键 词:农业机器人 微分先行PID 不完全微分PID 最优曲率 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象