基于Greenshield模型的VANET异常节点检测机制  被引量:3

Abnormal Node Detection Mechanism for VANET Based on Greenshield Model

在线阅读下载全文

作  者:李立[1] 李晓东[1] 任刚[2] 

机构地区:[1]郑州成功财经学院信息工程系,郑州451200 [2]中国科学院软件研究所,北京100190

出  处:《计算机工程》2018年第2期114-118,123,共6页Computer Engineering

基  金:国家创新基金(435012C26244104350)

摘  要:面向车辆自组网的安全通信问题,提出一种基于Greenshield模型的异常节点检测机制。结合车辆自组网的特点,构造Greenshield模型,计算车辆速度、车辆密度和车流量参数。在此基础上依据车辆自身无线通信设备计算的车流量和接收到的其他车辆计算的车流量的差异,初步定位可能的异常节点位置。采用假设检验中的u检验方法决定是否接受接收到的数据,据此推断节点是否异常。仿真结果表明,采用该机制检测异常节点的真正率指标高、假正率指标低,能有效检测车辆自组网中的异常节点。In order to solve the problem of secure communication in Vehicle Ad Hoc Network(VANET),an abnormal node detection mechanism based on Greenshield model is proposed.Combined with the characteristics of vehicle ad hoc networks,Greenshield model is constructed to calculate the vehicle speed,vehicle density and traffic flow parameters.On this basis,based on the difference between the vehicle traffic calculated by the vehicle wireless communication devices and the traffic flow calculated by other vehicles received,the location of possible abnormal nodes may be initially located.The u test method in the hypothesis test is adopted to determine whether to accept the received data and to infer whether the node is abnormal.Simulation results show that the real index of abnormal node detection using this mechanism is high,the index of false positive rate is low,and the abnormal node in the vehicle ad hoc network can be effectively detected.

关 键 词:车辆自组网 Greenshield模型 假设检验 U检验 异常节点检测 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象