检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张鑫[1] 赵建民[1] 倪祥龙[1] 李海平[1]
机构地区:[1]军械工程学院,石家庄050003
出 处:《机械强度》2018年第1期45-49,共5页Journal of Mechanical Strength
摘 要:运用前馈神经网络对轴承寿命分布进行预测,并提出了基于维修窗的维修决策模型。首先运用神经网络对轴承寿命分布的均值和方差进行预测,从而得到轴承的寿命分布,提出基于维修窗的维修决策模型,并与基于阈值限维修模型进行对比。并对不同的维修窗位置与最优维修点的关系进行分析。通过运用轴承全寿命退化数据对模型进行验证,计算出两种模型的维修费用率,得出在一定的时间区间采用基于维修窗的维修决策模型优于阈值限维修模型的结论。The feed forward neural network is used to predict the bearing life distribution in this paper,and puts forward the maintenance decision model based on the maintenance window. The mean and variance of the bearing life distribution are predicted by using neural network,and the life distribution of the bearing is obtained. A maintenance decision model based on the maintenance window is proposed and compared with the threshold value maintenance model. The relationship between different maintenance window position and optimal maintenance point is analyzed. The model is verified by using the data of the whole life of bearing,it is concluded that the maintenance decision model based on the maintenance window is better than the threshold limit maintenance window is better than the threshold limit maintenance model in a certain time interval by calculate the maintenance cost rate of the two models.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166