一类高阶KdV类型水波方程的多辛Euler-box格式  被引量:1

Multi-symplectic Euler-box Scheme for a High-order Wave Equation of KdV Type

在线阅读下载全文

作  者:王俊杰[1,2] 李胜平[1] 

机构地区:[1]普洱学院数学系,云南普洱665000 [2]西北大学数学系,陕西西安710127

出  处:《工程数学学报》2018年第1期55-68,共14页Chinese Journal of Engineering Mathematics

基  金:云南省教育厅科学研究基金(2015y490);普洱学院创新团队(CXTD003)~~

摘  要:高阶KdV类型水波方程作为一类重要的非线性方程有着许多广泛的应用前景.本文主要研究高阶KdV类型水波方程的多辛Euler-box格式.首先,通过正则变换,构造了高阶KdV方程的多辛结构,并得到该系统的多辛守恒律、局部能量守恒律和动量守恒律.然后,我们利用Euler-box格式对高阶KdV方程进行离散,并基于Hamilton空间体系的多辛理论研究了该系统的离散Euler-box格式.我们证明该格式满足离散多辛守恒律,并且给出该格式的向后误差分析.最后,数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.The high order KdV equation, an important nonlinear wave equation, has a broad application prospect. In the paper, a multi-symplectic Euler-box scheme is presented for the high order KdV equation. First, we give the multi-symplectic structure of the high-order KdV equation by canonical transformation, and obtain an associated multi-symplectic conservation law, the local energy and momentum conservation laws. Then, we apply the Euler-box scheme to obtain a discrete scheme of the high order Kd V equation, and study the scheme based on a Hamilton-space system. Moreover, we prove that the scheme preserves a dispersed multisymplectic conservation law, and give the backward error analysis of the scheme. Finally, the numerical experiments of the solitary wave are given, and results show that the numerical scheme is an efficient method with excellent long-time numerical behaviors.

关 键 词:Hamiton系统 Euler-box格式 多辛算法 高阶KdV类型水波方程 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象